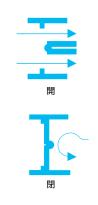
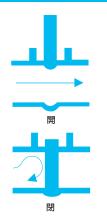

卷末資料

バルブの種類と特長	443
コントロールバルブの口径選定手順	444
Cv計算	445
参考換算式及び計算式・リーク量計算	447
真空仕様限界	448
流速計算	449
騒音予測計算と軽減対策	450
キャビテーションの予測計算	455
型式別面間寸法表	459
単位換算表	460
物理定数表	461
主要フランジ規格表	469

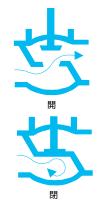
バルブの種類と特長


バルブの機能は、流れを止める・流れ方向を一定にする・流量や圧力の調節の3つに大別されます。 これらの機能を 発揮する上で選定のめやすとなるように、バルブの種類と特長をご紹介します。

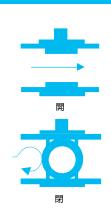
バタフライバルブ (蝶型弁)


- ・名称のとおり蝶の形状 と似ているバルブ
- ・閉止能力がよく、コント ロールバルブとして使 用できる
- ・流体抵抗が小さい(流 体が流れやすい)
- ・開閉トルクが小さく、か つ開閉操作が90°回転 のため自動化に適する
- ・軽量、コンパクト(大口 径も製作可)

チェッキバルブ


- ・一定方向のみに流すバ ルブ
- ・弁体が軽量なため、垂直 配管にも取り付け可能
- ·開閉スピードが早く、ウ ォーターハンマーを防 止する

ゲートバルブ (仕切弁)


- ・名称のとおり流体の流 れを仕切る構造。上から 板上の弁体が降りてき て流路を塞ぐ
- ·ON-OFFバルブ(コント ロールバルブには不適)
- ・全開時の流体抵抗が小 さい(流体が流れやすい)
- ・開閉のストロークが大 きく、開閉時間が増大し、 急速開閉には不適

グローブバルブ (玉形弁)

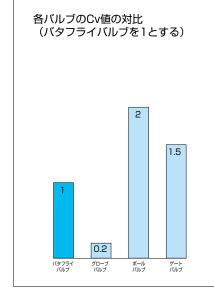
- · 名称のとおり球形状で、 流体の流れはS字状と なる
- ・閉止能力がよく、かつコ ントロールバルブとして 使用できる
- ・流体抵抗が大きい(流 体が流れにくい)
- ・開閉に大きな操作力が必 要で、大口径には不適

ボールバルブ

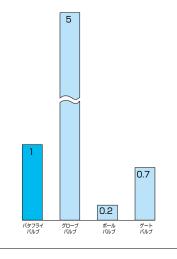
- ・栓が球状のバルブ
- ·ON-OFFバルブ(コント ロールバルブには不適)
- ・全開時の流体抵抗が小 さい(流体が流れやすい)
- ·開閉操作が90°回転の ため自動化に適する
- ・ボールの加工に高度な 加工技術が必要

■バタフライバルブと各バルブの比較(呼び径100mmの対比。弊社バルブ型式は700Gとして算出しています。)

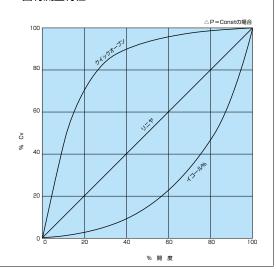
バタフライバルブとグローブバルブ


項目	バタフライバルブ	グローブバルブ
圧力損失(ξ)	0.3	1.5
流量特性	イコール%	イコール%
レンジアビリティ	10:1	30:1

バタフライバルブとボールバルブ


項目	バタフライバルブ	ボールバルブ		
圧力損失(ξ)	0.3	0.05		
流量特性	量特性 イコール%			
レンジアビリティ	10:1	3:1		

バタフライバルブとゲートバルブ


項目	バタフライバルブ	ゲートバルブ
圧力損失(ξ)	0.3	0.2
流量特性	イコール%	クイックオープン

各バルブの圧力損失の対比 (バタフライバルブを1とする)

固有流量特性

コントロールバルブの口径選定手順

正しい口径のバルブを選定する為には、口径選定計算式と選定要領を十分理解することが必要です。次に選定手順を記述します。

- 尚、計算式はISAの定める計算式に準拠しております。
- ① 与えられた流量データから臨界流れか、亜臨界流れかを決定します。
- ② 該当する計算式にデータを入れて、Cv値を算出します。
- ③ Cv値表からバルブロ径を選定します。

但し

- (1) レジューサの間にバルブが設置されている場合は、配管修正係数Fpにて計算Cv値を補正してください。
- (2) 必要とする最大Cvが選定した口径の定格開度 (全開) に対して80%以上である場合は次の更に大きな口径を選定してください。

(例)

清水ラインにおいて、入口圧力が0.3MPa、出口圧力が0.25MPaで流量が100m³/hの場合、求められるCv値は164となります。

この場合、507V 80Aですと最大Cvが176ですから80%以上となります。従って弊社では、507V 100A を推奨することになります。

(3) 予めバルブ差圧が算出されていない場合は、口径選定の為にポンプ吐出圧の5~10%をバルブ圧力損失として仮定し、口径選定してください。

[参考]

Cv値は次の様に定義されています。

「 60° F(15.6° C)の清水を弁の差圧を1psi(6.89kPa)に保って流したときの流量をGPM(gallon/min)で表した数値。

Cv計算

		Cv計算式	
流体		圧 力 条 件	計算式
	容積流量	亜臨界 ΔP <fl²(δps)< th=""><th>$C v = 11.6q \sqrt{\frac{G f}{\Delta P}}$</th></fl²(δps)<>	$C v = 11.6q \sqrt{\frac{G f}{\Delta P}}$
液	T IX/III.E	臨 界 Δ P ≧ F L² (Δ P S)	$C v = 11.6 \frac{q}{FL} \sqrt{\frac{G f}{\Delta P S}}$
体	重量流量	亜臨界 Δ P < F L² (Δ P S)	$C v = \frac{11.6W}{\sqrt{G f \Delta P}}$
	± = ///	臨 界 ΔP≧FL²(ΔPS)	$Cv = \frac{11.6W}{FL\sqrt{Gf \Delta PS}}$
	容積流量	亜臨界 Δ P < F L ² P 1	$Cv = \frac{Q}{3.01} \sqrt{\frac{GT}{\Delta P (P_1 + P_2)}}$
気		臨 界 Δ P ≧ F L ² P 1 2	$Cv = \frac{Q\sqrt{GT}}{2.62 F_L \cdot P_1}$
体	重量流量	亜臨界 $\Delta P < FL^2 \frac{P_1}{2}$	$C v = \frac{4627W}{\sqrt{\Delta P (P_1 + P_2) Gf}}$
	土生川里	臨 界 Δ P ≥ F L² P 1/2	$Cv = \frac{5343W}{F \cdot P \cdot \sqrt{Gf}}$
飽和	重量流量	亜臨界 Δ P < F L ² P 1 2	$C v = \frac{7098W}{\sqrt{\Delta P (P_1 + P_2)}}$
飽 和 蒸 気	王里加里	臨 界 Δ P ≧ F L ² P 1 2	$C v = \frac{8206W}{F L \cdot P_1}$
過熱	舌昙汝星	亜臨界 Δ P < F L ² P 1 2	$C v = \frac{7098W (1+0.00126Tsh)}{\sqrt{\Delta P (P_1 + P_2)}}$
過熱蒸気	重量流量	臨 界 Δ P ≧ F L ² P 1/2	$Cv = \frac{8206W (1+0.00126Tsh)}{F_L \cdot P_1}$

記号の説明

Cv :バルブ容量係数

FL :圧力回復係数

G :比 重 (液体の場合は水に対する比重、気体の場合は空気に対する比重。

空気の比重=1,15℃)

Gf :弁入口側温度での比重 (液体の場合は水に対する比重、気体の場合は空気に対する比重。

水の比重=1,15℃)

Pi :弁入口側圧力 (kPaA)

Pa :弁出口側圧力 (kPaA)

ΔP:弁前後の差圧(P1-P2) (kPa)

Pc:臨界圧力 (kPaA) Pv:入口温度における液体の飽和蒸気圧 (kPaA)

 ΔPS :サイジングのための最大 ΔP

・使用条件:出口圧力が蒸気圧より高い場合

ΔPS=P1-Pv (kPa)

・使用条件:出口圧力が蒸気圧と等しいか或いは低い場合

$$\Delta PS = P1 - \left(0.96 - 0.28\sqrt{\frac{Pv}{PC}}\right) Pv \qquad \text{(kPa)}$$

q :液体の容積流量 (m³/h)

Q :気体の容積流量[15℃、1atmの状態] (m³/h)

 $=Nm^3/h \times \frac{288}{273}$

T :流体温度〔273+℃〕 (K)

Tsh:過熱度 (℃)

=T-Tc

Tc : 弁入口側圧力(P1)での飽和蒸気温度 (K)

W :重量流量(T/h) = (1,000kg/h)

配管修正係数計算式

$$Fp = \left\{ 1 + \frac{\left\{ 0.5 \left(1 - \left(\frac{d}{D1} \right)^2 \right)^2 + 1.0 \left(1 - \left(\frac{d}{D2} \right)^2 \right)^2 \right\} \times \left(\frac{Cv}{d^2} \right)^2 \right\} - \frac{1}{2}}{0.00214} \right\}$$

Fp :配管修正係数

Cv :標準配管のときのバルブ容量係数

d :弁呼び径 (mm) D1:入口側配管呼び径 (mm)

D2:出口側配管呼び径(mm)

修正Cv值計算式

CvR=Fp·Cv

CvR:修正Cv值

参考換算式及び計算式

弁損失係数 ζ ←→Cv値換算式

$$\zeta = 21.38 \times \frac{D^4}{Cv^2}$$

$$Cv = 4.624 \times \frac{D^2}{\sqrt{\zeta}}$$

ここで D:管内径(cm)

Cv値→Kv値換算式

ドイツでは、Cv値の代わりにKv値が用いられています。 Kv値は、5~30℃の清水をバルブの差圧1barで流し た場合の流量をm³/hで表わしたものです。

$$Kv = \frac{Cv}{1.167}$$

弁損失係数 ζ→Kv値

$$Kv = 4.0 \times \frac{D^2}{\sqrt{\zeta}}$$

ここで D:管内径(cm)

C∨値→A∨値換算式

Cv値をSI単位(国際単位)で表わすとAv値になります。

$$Av = \frac{24}{10^6} \times Cv$$

等価管長(m)計算式

$$L = 8.5 \times \frac{D^{4.87}}{Q^{1.85}} \times \Delta P$$

ここで D:管内径(cm) Q:流量(ℓ/min) ΔP:差圧(kPa)

【参考】消防防災設備用性能認定品の場合、下表の流量 に基づき等価管長を測定しています。

呼び径	流量(ℓ/min)
50mm	800
65mm	900
80mm	1350
100mm	2100
125mm	3300
150mm	4800
200mm	8500
250mm	13000
300mm	19000

弁圧力損失計算式

$$\Delta P = \frac{1}{102} \cdot \zeta \cdot \frac{V^2}{2g} \gamma$$

ここで ζ:圧力損失係数 ΔP:弁差圧(kPa)

g :重力加速度9.8m/sec²

γ :比重量(水の場合=1000)(kg/m³)

V:流 谏(m/sec)

リーク量計算

302Y、337Yの「許容弁座リーク基準」 グラフにおいて、 $[1\times10^{-5}\text{Cv}]$ 、 $[1\times10^{-4}\text{Cv}]$ という場合のリーク量の 計算方法は、Cv計算式から逆算で行います。具体的には下記の通りです。

- ①各弁型式の「許容弁座リーク基準」グラフより、弁座リーク基準値を確認する。
- ②下記流体条件を確認する。

P1:弁入口側圧力 (kPaA)

P2:弁出口側圧力 (kPaA)

△P :弁前後の差圧(P1-P2) (kPa)

Gf: 弁入口側温度での比重 (液体の場合は水に対する比重、気体の場合は空気に対する比重。

水の比重=1,15℃)

G :比 重

(液体の場合は水に対する比重、気体の場合は空気に対する比重。

空気の比重=1.15℃)

T:流体温度 (K)

Cv:全開時のバルブ容量係数

③下式により、リーク量を計算する。

・液体の場合

・気体の場合

$$q = \frac{A}{11.6} \times \frac{1}{\sqrt{\frac{Gf}{\triangle P}}}$$

$$Q = \frac{3.01A}{\sqrt{\frac{GT}{\triangle P(P_1 + P_2)}}}$$

q :液体の計算リーク量 (m³/h) Q :気体の計算リーク量 (m³/h)

→(例)302Y 100mmの場合の全開Cv値は432であり、 温度150℃、弁入口側圧力1.0MPaの弁座リーク基準値は A:弁座リーク値 (1×10⁻⁵Cv、1×10⁻⁴Cv) 1×10⁻⁵Cvなので、A=1×10⁻⁵×432=0.00432となる。

真空仕様限界

	公刑士	呼び径範囲	使用	可能真空度(kl	PaA)	弁座リーク	備考				
	弁型式	(mm)	10~50℃	50~80℃	80~100℃	(kPa· ℓ/h)	川 考				
		80-200	1.33	1.33	2.66	8.0					
	302A	250-300	1.33	3.99	5.32	14.0					
		350-600	2.66	3.99	5.32						
		80-200	0.133	0.133	1.33	1.0					
ハイパ	304A	250-300	1.33	1.33	2.66	8.0					
フォ		350-600	2.66	3.99	5.32		ゲニン パオンケル サモチ しょくいナーナ				
マ マ	0001/	40-200	1.33	1.33	2.66	14.0	グランド構造は特殊となります。				
ハイパフォーマンスバルブ	302Y	250-300	2.66	3.99	5.32						
ルブ		40-200	1.33	1.33	2.66	1.0					
·	304Y	250-300	2.66	3.99	5.32	8.0					
-		40-200	1.33	1.33	2.66	1.1					
	304YA	250-300	2.66	3.99	5.32	8.3					
-	337Y	50-200	1.33	1.33	2.66	14.0					
		65-200	0.133	1.33	2.66	0.3					
1+1	846T	250-300	0.133	1.33	2.66	3.0	ヒートサイクル、開閉頻度が多い				
樹脂ライニングバルブ		50-200	0.133	1.33	2.66	0.3	場合もれ量は多くなります。				
フ <u>イ</u>	847T	250-300	0.133	1.33	2.66	3.0					
ング		350-400	39.9	66.5	使用不可	5.0					
バル	841T	450-600	39.9	66.5	使用不可						
ブ		350-400	39.9	66.5	使用不可	5.0					
	842T	450-600	39.9	66.5	使用不可						
		40-200	13.3	26.6	使用不可	3.0					
	700G	250-300	26.6	53.2	使用不可	5.0					
		350-600	39.9	66.5	使用不可						
		50-200	13.3	26.6	使用不可	3.0					
ゴ	705G 704G	250-300	26.6	53.2	使用不可	5.0					
ムシー	704G	350-600	39.9	66.5	使用不可						
ゴムシートバルブ		50-200	0.133	1.33	使用不可	0.3					
ルブ	731P	250-300	0.133	2.66	使用不可	3.0					
	732P	350-400	0.55		4	5.0					
		450-600	2.66	13.3	使用不可	7.0					
		125-300	26.6	53.2	使用不可	5.0					
	722F	350-600	39.9	66.5	使用不可						

弁座リーク量は、常温、新品時での実験結果をもとにした予測値です。 上表を超える範囲でお使いになる場合は、弊社営業担当にお問い合わせください。

流速計算

流速の制限値

流速の使用限界は、下記表に示します。

流	体	の 種 類	制限值(連続運転)
液	体	一般ゴムシート(773Z、700G、722F等)	3 m/s以下
718	14	焼付ゴムシート(731P、732P)	5~6 m/s
ガ	ス、	ベーパー	120~200 m/s
スチーム		飽和スチーム	50~80 m/s
		過熱スチーム	80~120 m/s

※バルブ型式により制限値が異なる為に、制限値近傍の場合は弊社営業担当にお問い合わせください。 ※詳細なサイジング計算を行った場合は、上記の値と異なる場合があります。

流速計算式

液体の場合

$$V = 354 \times \frac{Q}{D^2}$$

ガス、ベーパーの場合

$$V = 124.5 \times \frac{Q(T+273)}{D^2 \cdot P_2}$$

スチームの場合

$$V=354\times\frac{Q\cdot U}{D^2}$$

:流速 (m/sec)

Q :流量

液体 (m³/h)

ガス〔15℃、101325Pa(1気圧)の状態〕(m³/h)

$$=Nm^3/h \times \frac{288}{273}$$

スチーム (kg/h)

U :弁出口側比容積 (m^3/kg) D :呼び径 (mm) P2:弁出口側圧力 (kPaA) T :温度 (\mathbb{C})

騒音予測計算と軽減対策

騒音の測定方法

一般に用いられている方法として、ISAの推奨する方法があります。 バルブ出口より下流側 36~48インチ(0.9~1.2m) 配管表面より 28~40インチ(0.7~1.0m)

において、次の方法にて行います。

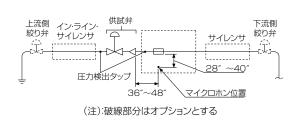


図1 ISA-RP59.1によるラボラトリ・テスト装置

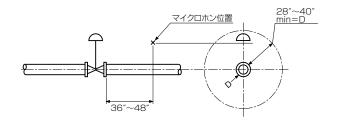


図2 ISA-RP59.2による 実機プラントのマイクロホン位置

507V、508Vの場合の騒音計算式

気体の場合

 $SP=-10.7+10Log(Cv \cdot FL \cdot P_1 \cdot P_2)+18.5Log(D)-30Log(t/t40) +12Log(P_1/P_2-1.05)-10Log(no)+SG$

液体の場合

 $SP=10Log(Cv)+12Log(0.0102\times(P_2crit-P_2))+16Log(P_2-Pv)-10Log(no)+18.5Log(D)-30Log(t)+<math>\frac{1}{2}$ 26.5

(液体の場合の注意点)

- 1.上記の式は弁差圧 ΔP (= P_1-P_2)が、 P_1 の5%以下の場合は適用できません。
- 2.もし $0.7P_1-P_2 \le 6.86$ の場合は式において $12Log(0.0102 \times (P_2crit-P_2))$ 項を0dBAとして下さい。 そしてこの場合※印の係数を26.5の代りに12.7とおいて計算すること。
- SP :騒音値〔91cmにおける音圧レベル〕 (dBA)
- Cv :実際条件下での流量係数
- P1:弁入口側圧力(kPaA)P2:弁出口側圧力(kPaA)FL:圧力回復係数(507Vの場合は0.72)
- D :配管径 (mm) t :配管肉圧 (mm)
- t 40 :Sch#40の配管肉圧 (mm)
- no :見かけのバルブオリフィス係数

50mm=10 150mm=18 80mm=14 200mm~400mm=30 100mm=16

SG :ガス成分修正係数

/飽和蒸気=-2、 過熱蒸気=-3¹ | 天然ガス=-1、 空 気=0 /

P2crit:P1-0.3(P1-Pv) (kPaA) Pv :液体の蒸気圧 (kPaA)

507V、508V以外の騒音計算式

ISAの定める計算式に準拠しております。

気体の場合

 $SP=10Log (X \cdot n \cdot 10^9 \cdot Cv \cdot F_L \cdot 2.105 \cdot P_1 \cdot P_2) - TL + SG + 3$

液体のキャビテーションが発生している場合

 $SP=10Log(Cv-FL) +8Log(0.1451\times (P_2crit-P_2)) +20Log(0.1451\times (P_2-Pv))+33$

SP :騒音値(91cmにおける音圧レベル) (dBA)

Cv :実際条件下での流量係数

:圧力回復係数 FL

 P_1 :弁入口側圧力 (kPaA) (kPaA) P_2 :弁出口側圧力

:管壁の単位重量 (kg/m²)……(巻末資料-10参照) m :見かけのバルブオリフィス係数(バタフライ弁はn=1.4)

:伝達損失→大気に直接放出する弁の場合は省く。 TL

$$=17Log_{10}\left(\frac{3.072\times1.4m}{\sqrt{Cv\cdot F_L}}\right)-36 \text{ (dBA)}$$

 P_2 crit: $P_1 - FL^2(P_1 - Pv)$ (kPaA) Pv :液体の蒸気圧 (kPaA)

Χ :機械的出力の換算分数

> $=\frac{P_1-P_2}{}$ 但し、Xが1より大きい場合はX=1とする。 0.47P₁

:気体の固有係数 SG

:音響効率係数(巻末資料-11参照)

(注)※KcとFL²の差がKcの10%を超える場合はFL²のかわりにKcを用いる。

ガス固有係数 SG

飽和蒸気	-2
過 熱 蒸 気	-3
天 然 ガス	- 1
水素	-10
酸素	+0.5
アンモニア	-2
空気	0
アセチレン	-1
二酸化炭素	+1
一酸化炭素	0
ヘリウム	-6.5
メタン	-1
窒素	0
プロパン	+1
エチレン	-1
エタン	-1

上記以外のガスのSGは右表より求める。

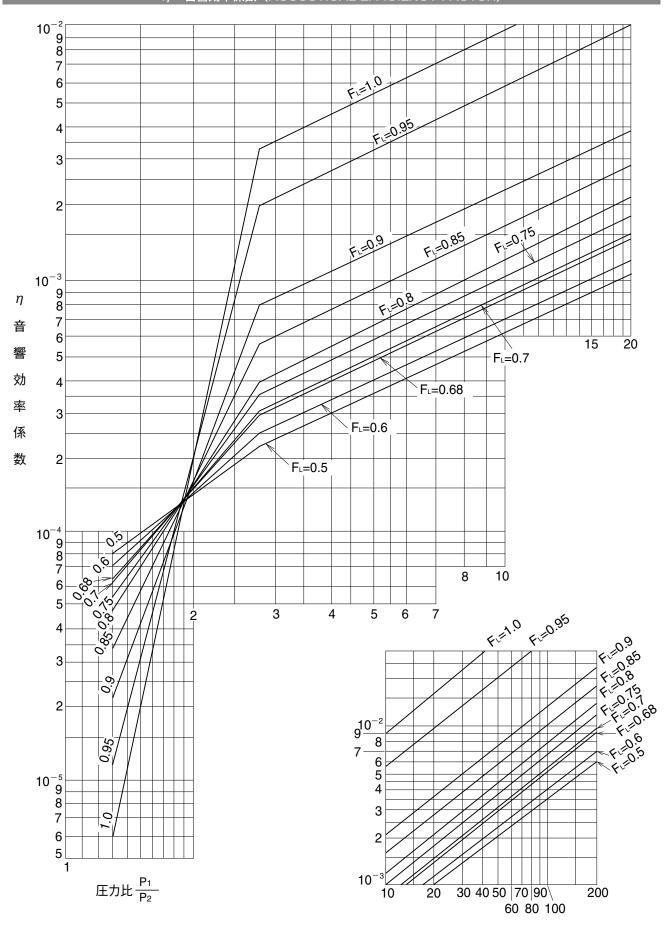
+2 +1 0 -1 (Vap) -3 9S系 -4 以中 -5 中田 -6 ド、-7 -8 -9 -10 0 10 20 30 40 50

ガス固有係数 SG

管壁の単位重量 m

 $m=A\times t$

※A:基本質量(kg/mm·m²)


〔鋼管:7.85、ステンレス管:7.93〕

t:管の厚さ(mm)

注)STPY管は代表厚さを記載しています。

呼て	形汉	外径		P管	STF	Y管	Sch	n20		า40		า60	Scl	า80	Sch	10S	Sch	20S
hT.C) 1土	(mm)	厚さ	m														
mm	inch	(111111)	(mm)	(kg/m²)														
40	1 1/2	48.6	3.5	27.5	_	_	_	_	3.7	29.0	4.5	35.3	5.1	40.0	2.8	22.0	3.0	23.6
50	2	60.5	3.8	29.8	-	_	3.2	25.1	3.9	30.6	4.9	38.5	5.5	43.2	2.8	22.0	3.5	27.5
65	2 1/2	76.3	4.2	33.0	-	_	4.5	35.3	5.2	40.8	6.0	47.1	7.0	55.0	3.0	23.6	3.5	27.5
80	3	89.1	4.2	33.0	-	_	4.5	35.3	5.5	43.2	6.6	51.8	7.6	59.7	3.0	23.6	4.0	31.4
100	4	114.3	4.5	35.3	_	_	4.9	38.5	6.0	47.1	7.1	55.7	8.6	67.5	3.0	23.6	4.0	31.4
125	5	139.8	4.5	35.3	_	_	5.1	40.0	6.6	51.8	8.1	63.6	9.5	74.6	3.4	26.7	5.0	39.3
150	6	165.2	5.0	39.3	-	_	5.5	43.2	7.1	55.7	9.3	73.0	11.0	86.4	3.4	26.7	5.0	39.3
200	8	216.3	5.8	45.5	-	_	6.4	50.2	8.2	64.4	10.3	80.9	12.7	99.7	4.0	31.4	6.5	51.0
250	10	267.4	6.6	51.8	-	_	6.4	50.2	9.3	73.0	12.7	99.7	15.1	118.5	4.0	31.4	6.5	51.0
300	12	318.5	6.9	54.2	_	_	6.4	50.2	10.3	80.9	14.3	112.3	17.4	136.6	4.5	35.3	6.5	51.0
350	14	355.6	7.9	62.0	7.9	62.0	7.9	62.0	11.1	87.1	15.1	118.5	19.0	149.2	-	_	_	_
400	16	406.4	7.9	62.0	7.9	62.0	7.9	62.0	12.7	99.7	16.7	131.1	21.4	168.0	_	_	_	_
450	18	457.2	7.9	62.0	7.9	62.0	7.9	62.0	14.3	112.3	19.0	149.2	23.8	186.8	-	_	_	_
500	20	508.0	7.9	62.0	9.5	74.6	9.5	74.6	15.1	118.5	20.6	161.7	26.2	205.7	-	_	_	-
550	22	558.8	_	_	9.5	74.6	9.5	74.6	15.9	124.8	22.2	174.3	28.6	224.5	-	_	_	_
600	24	609.6	_	_	9.5	74.6	9.5	74.6	17.5	137.4	24.6	193.1	31.0	243.4	_	_	_	-
650	26	660.4	-	_	12.7	99.7	12.7	99.7	18.9	148.4	26.4	207.2	34.0	266.9	ı	_	_	-
700	28	711.2	_	_	12.7	99.7	_	_	_	_	-	_	_	_	-	_	_	-
750	30	762.0	_	_	12.7	99.7	_	_	_	_	_	_	_	_	-	_	_	_
800	32	812.8	_	_	12.7	99.7	_	_	_	_	_	_	_	_	_	_	_	-
850	34	863.6	-	_	12.7	99.7	_	_	_	_	ı	_	_	_	ı	_	_	-
900	36	914.4	_	_	12.7	99.7	_	_	_	_	_	_	_	_	_	_	_	_
1000	40	1016.0	_	_	15.9	124.8	_	_	_	_	_	_	_	_	_	_	_	_
1100	44	1117.6	_	_	15.9	124.8	_	_	_	_	_	_	_	_	_	_	_	_
1200	48	1219.2	_	_	15.9	124.8	_	_	_	_	_	_	_	_	_	_	_	
1350	54	1371.6	_	_	15.9	124.8	_	_	_	_	_	_	_	_	_	_	_	_

バルブ騒音の軽減対策

ここでは、空力騒音の対策について述べます。

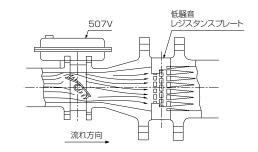
- この種の対策としては、主として次の通りです。
- (1)音源対策
- (2) 遮音対策

これらの方法の採用にあたっては、騒音の評価、騒音の種類の他に、プロセスの制御性、イニシャルコスト、メンテナンスコスト等も合わせて検討する必要があります。

したがって総合的な判断が必要になってくる為、ユーザ・メーカーの間で十分検討を行うことが必要です。 尚、キャビテーション騒音に関しては、キャビテーション軽減、又は防止することにあるため巻末資料 - 13~16 "キャビテーションの予測計算" を参考ください。

(1)音源対策

この種の対策としては、次の2種類に分類できます。


①低騒音弁の採用

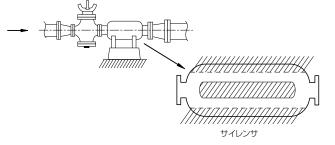
507V、508Vの場合

最大-10dBA

②バルブ下流側処置

(1)レジスタンス·プレートの挿入の場合 -15dBA

■低騒音ユニット例


(2)サイレンサの設置

・弁下流側のみ

 $-10\sim-15$ dBA

・弁上流、及び下流側

-20~-25dBA

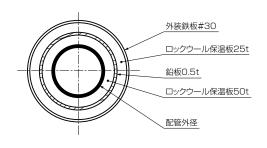
(2)遮音対策

この対策は、音の発生そのものを減少させるものではありません。

①配管肉厚(スケジュールNo.)をUPする。

肉厚が倍になると

-5dBA


経験的には、バルブサイズの100倍程度の距離まで対策を施す必要があると言われています。

②防音ラギング

保温剤(ロックウール)、鉛板、鉄板等を幾層にも組合わせて配管を覆う方法。 -5~10dBA

③遮音箱や遮音壁を設ける。

以上、各種対策について説明しましたが、実際の対策にあたってはこれらを組合わせて効果的な低減策を取る必要があります。

(例)配管ラギング材料

キャビテーションの予測計算

バタフライバルブにおけるキャビテーション発生原理

キャビテーションの発生は、前述のごとく液体中に低圧部が発生することによるが、この低圧が発生する原因として 次のものがあります。

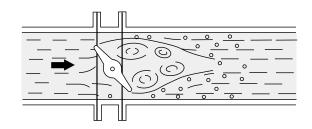


図1 絞り状態にあるバタフライ弁

- (1)流体が部分的に狭められる為、縮流を生じ流速が増加し、圧力が低下する。
- (2)弁下流側の渦の内部に生ずる低圧部。
- (3)高速で流れる流体と物体との境界面に生ずる低圧部。即ち、弁体鋳肌の突起部、テーパーピンの頭、弁体エッ ジ、及びハブの部分等。
- (4)バルブ本体や弁体が高周波で振動する時、周囲の流体がその物体の動きに追従できず、空隙を生ずる。

バタフライバルブのキャビテーションは(1)及び(2)が主たる発生原因です。

即ち、バルブが絞り状態にある時、図1に示す通り流体は弁体の上端、及び下端部を通過する際、著しく絞られて高流 速となり、この部分に低圧部を生じます。

ここで、バルブの流れをオリフィスの流れに近似すると図2のごとく表わせます。図の縮流部は、通常Vena Contracta(ベナ・コントラクタ)と呼ばれています。

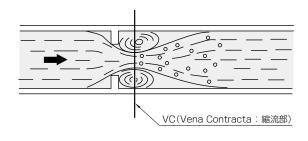


図2 オリフィスの流れ

又、ここでの圧力の関係を図示すると図3の通りとなります。

もし、前述の高流速部で圧力が飽和蒸気圧以下になると気泡 がここで発生する。気泡は、バルブ下流側に流され、周囲の水 の圧力回復(圧力の上昇)に伴い崩壊します。

この崩壊は、非常に短時間(1/1.000秒程度)で起こり、この 時強い衝撃力(200~500気圧)が発生します。崩壊が物体 の近くで発生すると衝撃力により物体表・内面に大きな応力が 発生し、表面に損傷を生じます。

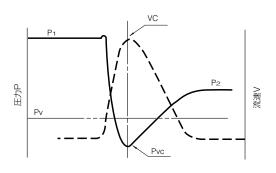


図3 圧力と流速の関係

バタフライバルブにおけるキャビテーション発生過程とフラッシング

一般にバルブ廻りの流れの状態を発達段階ごとに分類すると、次の通りとなります。

流れの状態	圧力条件	解説
図4 ノーマル流れ VC P1 Pv		
Pvc	P ₂ >Pv Pvc>Pv	・ノーマル流れ、即ち、乱流流れです。・この領域では、バルブを流れる流量は差圧の平方根に比例して増加します。
Pv Pvc	P2>Pv Pvc≦Pv	・実際、キャビテーション流れには差圧の増大に伴い次のステップがあります。 a. キャビテーション初生域 b. キャビテーション発達域 c. 全面キャビテーション域 ・騒音や振動を伴いバルブや下流側配管に損傷を引き起す場合があります。
図6 フラッシング流れ P1	P2≦Pv Pvc <pv< td=""><td>・バルブ下流側の圧力が液体の蒸気圧 より低くなった場合で、流体は液相から 気相に移り、この時生ずる激しい速度 変化、体積膨張等がフラッシングノイズ の主因となります。 気相によるクッション作用もあり、キャ ビテーション騒音よりも低レベルの騒 音となります。 ・高流速になる為、弁本体の材質アップ</td></pv<>	・バルブ下流側の圧力が液体の蒸気圧 より低くなった場合で、流体は液相から 気相に移り、この時生ずる激しい速度 変化、体積膨張等がフラッシングノイズ の主因となります。 気相によるクッション作用もあり、キャ ビテーション騒音よりも低レベルの騒 音となります。 ・高流速になる為、弁本体の材質アップ
Pvc		(ステンレス鋼、クロムモリブデン鋼)や 下流側配管形状に注意が必要です。

キャビテーション予測計算式

キャビテーションが発生しない場合

フラッシング

 $\Delta P < Kc(P_1 - Pv)$

P₂<P_V

 $FL^{2}(P_{1}-P_{V})>\Delta P$

初期キャビテーション

 $\Delta P = Kc(P_1 - Pv)$

ΔP :弁差圧 [P1-P2] Kc :キャビテーション係数

キャビテーション発達域

 P_1 :弁上流側圧力

(kPaA)

(kPa)

 $FL^{2}(P_{1}-P_{V}) > \Delta P > Kc(P_{1}-P_{V})$

 P_2 :弁下流側圧力 (kPaA)

Pv :液体の蒸気圧

(kPaA)

FL :圧力回復係数

全面キャビテーション

 $\Delta P \ge FL^2(P_1 - PV)$

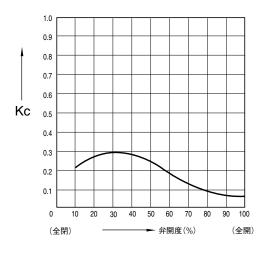
キャビテーションレベルと使用の判断基準

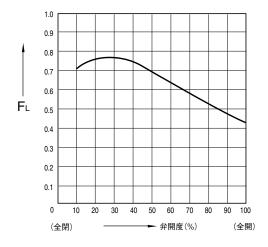
種類 キャビテーションレベル	一般ゴムシート (700G)	偏心型 フッ素樹脂 メタル (302A、304A) 731P	507V 508V	
キャビテーション 無	\circ	0	0	
キャビテーション初生	0	0	0	· ○ —— 使用可能 △ —— 弊社技術部との相談要
キャビテーション発達	Δ	0	0	× ——— 使用不可
全面キャビテーション	×	×	△ (対策検討)	表の条件 ・常用運転
フラッシング	×	×	△ (対策検討)	・キャビテーション発達域以上は 材質SUS選定

キャビテーションの軽減対策

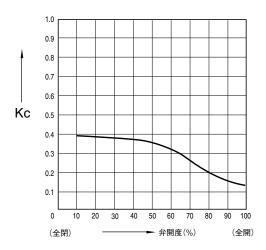
- コントロールバルブのキャビテーションダメージを軽減、又は防止する主たる方策について次に列挙します。
- (1) バルブを直列に設置し、制御する。即ち、各バルブへの圧力負荷を軽減する方法です。 この場合、両バルブは少なくとも4D(パイプ径の4倍)離すことが必要です。又トータルのKc、又はFLのルート (平方根)になり向上します。

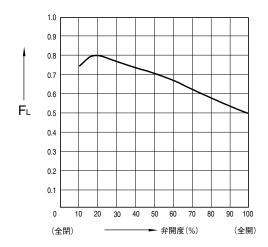
全面キャビテーションを避けるに必要なFLは次の条件を満たすことが必要です。

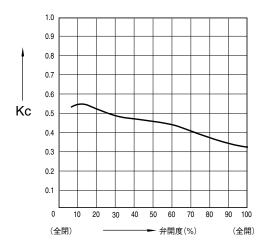

$$FL > \sqrt{\frac{P_1 - P_2}{P_1 - P_V}}$$

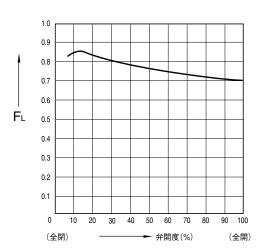

ただ、この場合制御バランスの取り方が難しくなる場合があります。

- (2) 減圧用多孔オリフィスを併用する。 但し、流量が大きく変動する場合は、低流量域においては、効果があまり期待できません。
- (3) 高いKc、又はFLを持つバルブの使用
- (4) バルブの取付位置を下げる。即ち、2次圧を上げる。 但し、既設の配管等への適用は難しい。
- (5) 整流格子等で流れの乱れを整える。


キャビテーション初生係数Kc及び圧力回復係数FLグラフ


中心型バタフライバルブ 適用:700・800シリーズ




ハイパフォーマンスバタフライバルブ 適用:300シリーズ

ロータリーコントロールバルブ 適用:507V、508V

型式別面間寸法表

単位:mm

- T-11		IIC D	0000												単位·mm
系列	一般機械装置用ウェハー形 細フランシ派		API594	API609	(参考)メーカー自主面間										
			Class250	Category B Class 150	(参考) メーカー日土山间										
口径 \	33	35	47	123								<u> </u>	35		
				<u> </u>	<u> </u>				40	40	45	45			40
50	43	43			54		56		40	40	45	45	35		43
65	46	46			60	40	56		46	40	45	45	35		46
80	46	46			67	48	60			40	50	50	40		64
100	52	52			67	54	66			40	50	50	40		64
125	56	56		100	83		70		62	_	55	55	45		70
150	56	56		100	95	57	76		_	52	60	60	50	90	76
200	60	60		100	127	64	95		_	62	65	65	60	100	89
250	68	68		110	140	71	108		_	89	90	80	_	110	114
300	78	78		110	180	81	144			89	90	90		110	114
350	78	78	92	120		92	_	184	_	89	100	100		120	
400	102	102	102	130		102	—	190		108	110	110	_	130	
450	114	114	114	150		114	—	200			120	120	_	150	
500	127	127	127	160		127	_				140	140		160	
600	154	154	154	170		154	_				160	160		200	
巴製品適用型式	302A(125mm) 304A(125mm) 302Y 304YA 508V 846T 847T 731P 732P 732X 731X 702Z (生産中止)	773Z (生産中止) 775Z (生産中止) 700G 704G 705G 700Z 700ZH 700ZS 700ZJ 731R	304A (350~600mm)	722F	906C (生産中止)	302A (80~100mm) 150~600mm) 304A (80~100mm) 150~600mm)	903C (生産中止) 904C (生産中止) 907L 903L	9010	337Y	507V	841T 842T	700S (生産中止) 700E	旧700Z (生産中止)	107H 108H (生産中止)	旧337Y 338Y (生産中止)

注)詳細寸法については、各形式ごとの形式別寸法図をご参照ください。

単位換算表

流量単位換算式

各種の流量単位からm³/hへの換算式

	m³/h	気体m³/h (at 15℃ 101kPa)
気体m³/h	_	×A
気体m³/h (at 15°C 101kPa)	XB	_
kg/h(at 0°C 101kPa)	÷SG×0.001	×23.63÷MW
kℓ/h	-	×A
t/h(at 0°C 101kPa)	÷SG	×1000×23.63÷MW
ℓ/h	×0.001	÷0.001×A
ℓ/min.	×0.06	×0.06×A
t/min.(at 0°C 101kPa)	÷SG×60	×60×1000×23.63÷MW
Lb/h(at 0°C 101kPa)	\times 0.4536÷SG \times 0.001	×0.4536×23.63÷MW
CFH (ft³/h)	×0.02832	×0.02832×A
SCFH(Nft³/h)	×0.02832×B	×0.02832
BBL/h(英バレル)	×0.159	×0.159×A
BBL/min.	×0.159×60	×0.159×60×A
GPM(gallon/min.)	×0.2271	×0.2271×A
CFM(ft³/min.)	×1.699	×1.699×A
SCFM	×1.699×B	×1.699
Nm³/h (at 0°C 101kPa)	$\times T_1 \times 0.1013 \div (P_1 \times 273)$	×288÷273

 $A=P_1\times 288\div (T_1\times 0.1013)$ $P_1=$ 弁入口側圧力(MPaA)

B=T₁×0.1013÷(P₁×288) T₁= 温度(°K) SG=比重

MW= 分子量

圧力単位換算式

各種の圧力単位から MPaAへの換算式

	MPa A
kgf/cm ² G	×9.807×10 ⁻² +0.1013
Bar G	×1×10 ⁻¹ +0.1013
Bar A	×1×10 ⁻¹
mmH₂O 又は mmAq	×9.807×10 ⁻⁶ +0.1013
cmH2O 又は cmAq	×9.807×10 ⁻⁵ +0.1013
mH₂O 又は mAq	×9.807×10 ⁻³ +0.1013
mmHg 又は Torr	×1.333×10 ⁻⁴
cmHg	×1.333×10 ⁻³
atm	×1.013×10 ⁻¹
atg	×9.807×10 ⁻² +0.1013
Pa G	×1×10 ⁻⁶ +0.1013
kPa G	×1×10 ⁻³ +0.1013
kPa A	×1×10 ⁻³
MPa G	+0.1013
MPa A	_
Lb/in² G(psi G)	×6.895×10 ⁻³ +0.1013
Lb/in² A(psi A)	×6.895×10 ⁻³
in Hg	×3.386×10 ⁻³

温度換算表

温度換算式

$$^{\circ}$$
C = $\frac{5}{9}$ (°F-32)

°F=	9 5	°C+32
	J	

<u> </u>						
°C ←	°F °C	→ °F				
-28.9	-20	-4.5				
-26.1	-15	-5.0				
-23.3	-10	14.0				
-20.6	- 5	23.0				
-17.8	0	32.0				
-15.0	5	41.0				
-12.2	10	50.0				
- 9.4	15	59.0				
- 6.7	20	68.0				
- 3.9	25	77.0				
- 1.1	30	86.0				
1.7	35	95.0				
4.4	40	104.0				
7.2	45	113.0				
10.0	50	122.0				
12.8	55	131.0				
15.6	60	140.0				
18.3	65	149.0				
21.1	70	158.0				
23.9	75	167.0				
26.7	80	176.0				
29.4	85	185.0				
32.2	90	194.0				
35.0	95	203.0				
37.8	100	212.0				
43.3	110	230.0				
48.9	120	248.0				
54.4 60.0	130 140	266.0 284.0				
65.6	150	302.0				
71.1	160	320.0				
76.7	170	338.0				
82.2	180	356.0				
87.8	190	374.0				
93.3	200	392.0				
98.9	210	410.0				
104.4	220	428.0				
110.0	230	446.0				
121.1	250	482.0				
148.9	300	572.0				
176.7	350	662.0				
204.4	400	752.0				
232.2	450	842.0				
260.0	500	932.0				
315.6	600	1112.0				
317.0	700	1292.0				

圧力換算率表

Pa	kPa	MPa	bar	kgf/cm ²	atm	mH₂O	mHg	Lb/in ²
1	1×10 ⁻³	1×10 ⁻⁶	1×10⁻⁵	1.02×10 ⁻⁵	9.87×10 ⁻⁶	1.02×10 ⁻⁴	7.5×10 ⁻⁶	1.45×10⁴
1×10 ³	1	1×10 ⁻³	1×10 ⁻²	1.02×10 ⁻²	9.87×10 ⁻³	1.02×10 ⁻¹	7.5×10 ⁻³	1.45×10 ⁻¹
1×10 ⁶	1×10 ³	1	1×10	1.02×10	9.87	1.02×10 ²	7.5	1.45×10 ²
1×10 ⁵	1×10 ²	1×10 ⁻¹	1	1.02	9.87×10 ⁻¹	1.02×10	7.52×10 ⁻¹	1.45×10
9.81×10⁴	9.81×10	9.81×10 ⁻²	9.81×10 ⁻¹	1	9.68×10 ⁻¹	1×10	7.7×10 ⁻¹	1.42×10
1.01×10 ⁵	1.01×10 ²	1.01×10 ⁻¹	1.01	1.03	1	1.03×10	7.6×10 ⁻¹	1.47×10
9.81×10 ³	9.81	9.81×10 ⁻³	9.81×10 ⁻²	1×10 ⁻¹	9.68×10 ⁻²	1	7.36×10 ⁻²	1.42
1.33×10 ⁵	1.33×10 ²	1.33×10 ⁻¹	1.33	1.3	1.32	1.36×10	1	1.93×10
6.89×10^{3}	6.89	6.89×10 ⁻³	6.89×10 ⁻²	7.03×10 ⁻²	6.8×10 ⁻²	7.03×10 ⁻¹	5.17×10 ⁻²	1

トルク換算率表

oz∙in	Lb∙in	Lb•ft	kg•cm	kg∙m	N∙cm	N∙m
1	0.0625	0.005	0.072	0.0007	0.706	0.007
16	1	0.083	1.152	0.0115	11.3	0.113
192	12	1	13.83	0.138	135.6	1.356
13.89	0.868	0.072	1	0.01	9.807	0.098
1389	86.8	7.233	100	1	980.7	9.807
14.16	0.088	0.007	0.102	0.001	1	0.01
141.6	8.851	0.738	10.20	0.102	100	1

比重換算式

	条件	比重G	
kg/Nm³	0℃	÷1.293	
Ng/INIII	1013mmbar	T 1.293	
kg/m ³	15℃	÷1.225	
Ng/III	1013mmbar	→ 1.225	

物理定数表

液体物理定数表

	1気圧の	比	重	
液体	ときの	温度	4 °C Ø	分子量
/IX P+	沸点	。 F	ときの	,, , <u>=</u>
	°F	·	水 = 1	
Acetaldehyde	69	68	.782	44.05
Acetic acid	245	68	1.049	60.05
Acetone	133	68	.79	58.08
Aero motor oil (typical)		60	.895	— E0.05
Alcohol, allyl-n	207 243	68 68	.855 .81	58.05 74.12
Alcohol, butyl-n Alcohol, ethyl-n (grain)	172	68	.789	46.07
Alcohol, methy-n (wood)	151	68	.79	102.17
Alcohol, propyl-n	207	0	.804	60.09
Ammonia (liquid)	-28	68	.662	17.31
Aniline	363	68	1.022	93.12
Automobile crankcase oils,				
SAE 10	_	60	.88 – .94	_
SAE 20	_	60	.88 – .94	_
SAE 30	_	60	.88 – .94	_
SAE 40	_	60	.88 – .94	_
SAE 50	_	60	.88 – .94	_
SAE 60	_	60	.88 – .94	_
SAE 70	_	60	.88 – .94	_
Automobile transmission lub,				
SAE 80	_	60	.88 – .94	_
SAE 90	_	60	.88 – .94	_
SAE 140	_	60	.88 – .94	_
SAE 250 Beer	_	60 60	.88 – .94 1.01	_
Benzol (Benzene)	176	68	.879	78.11
Brine, calcium chloride, 25%	_	60	1.23	_
Brine, sodium chloride, 25%	_	60	1.19	_
Bromine	142	68	2.9	159.83
Butyric acid-n	316	68	.959	88.10
Carbolic acid (phenol)	360	65	1.08	94.11
Carbon disulphide	115	68	1.263	76.14
Carbon tetrachloride	170	68	1.594	153.84
Castor Oil	_	68	.96	_
Chloroform	142	68	1.489	119.39
Compounded steam cyl oil (5% tal, ow)	_	60	.90	_
Decane-n	343	68	.73	142.28
Diethyl ether	94.4	68	.714	74.12
Ethyl acetate	171	68	.90	88.10
Ethyl biomide	101 269	59	1.45 2.18	108.98 187.88
Ethylene btomide Ethylene chloride	183	68 68	1.246	98.97
Formic acid	213	68	1.240	46.03
i omilio aciu	210	00	1.441	+0.00

液体物理定数表

	1気圧の	比	重	
	ときの		4 °C Ø	
液体	沸点	温度	ときの	分 子 量
	°F	°F	水 = 1	
Freon 11	_	70	1.49	
Freon 12	_	79	1.33	_
Freon 21	_	70	1.37	
Fuel oil, No.1	_	60	.82 – .95	_
No.2	_	60	.82 – .95	_
No.3	_	60	.82 – .95	_
No.5	_	60	.82 – .95	_
No.6	_	60	.82 – .95	_
Gasoline, typical (a)	_	6	.74	_
(b)	_	6	.72	_
(c)	_	6	.68	_
Glycerine, 100%	554	68	1.26	92.03
Glycerine and water. 50%	_	68	1.13	_
Glycol, Ethylene	_	68	1.125	62.07
Heptane-n	209	68	.684	100.20
Hexane-n	156	68	.66	86.17
Hydrochloric acid, 31.5%	_	68	1.05	_
Kerosene	_	60	.78 – .82	_
Lard oil	_	60	.91 – .92	_
Linseed oil (raw)	538	60	.92 – .94	_
Marine engine oil (20% blown rape)	_	60	.94	_
Methy acetate	135	68	.93	58.08
Methy iodide	108	68	2.28	141.94
Milk	_	68	1.02 - 1.04	
Naphthelene	424	68	1.145	_
Neatsfoot oil	_	60	.91 – .92	_
Nitric acid, 60%	_	68	1.37	_
Nitrobenzene	412	68	1.203	_
Nonane-n	302	68	.718	128.6
Octane-n	258	68	.70	_
Olive oil	(570)	68	.91	_
Pentane-n	97	68	.63	123.11
Petroleum ether (benzine)	_	60	.64	128.25
Propionic acid	286	68	.99	114.22
Ouenching oil (typical)	_	60	.86 – .89	_
Rapeseed oil	_	68	.91	72.09
Soya bean oil		60	.924	
Sperm oil	(209)	77	.88	74.08
Sugar, 20%	_	68	1.08	_
40%	_	68	1.18	_
60%		68	1.29	
Sulfuric acid, 100%	640	68	1.83	98.08
95%	_	68	1.83	_
60%	_	68	1.50	_
Turbine oil (typical medium)		60	.91	100.00
Turpentine Water (freeh)	320	60	.86 – .87	136.23
Water (fresh)	212	60	1.0	_
Water (sea)		60	1.03	_
Xyolene-o	287	68	.87	

液体の密度表

液体	密 度 g°/cm²	密度	温 度 ℃
(アセトン)	0.792	49.4	20
(エチルアルコール)	0.791	49.4	20
(メチルアルコール)	0.810	50.5	0
(ベンゼン)	0.899	56.1	0
(炭酸)	0.950 - 0.965	59.2 – 60.2	15
(二酸化炭素)	1.293	80.7	0
(四塩化炭素)	1.595	99.6	20
(クロロホルム)	1.489	93.0	20
(エーテル)	0.736	45.9	0
(ガソリン)	0.66 - 0.69	41.0 – 43.0	_
(グリセリン)	1.260	78.6	0
(ケロシン)	0.82	51.2	_
(水銀)	13.6	849.0	_
(ミルク)	1.028 – 1.035	64.2 – 64.6	_
(石油エーテル)	0.665	41.5	15
(木)	0.848 – 0.810	52.9 – 50.5	0
(ひまし油)	0.969	60.5	15
(ココナッツ油)	0.925	57.7	15
(綿種油)	0.926	57.8	16
(クレオソート油)	1.040 – 1.100	64.9 – 68.6	15
(あまに油)	0.942	58.8	15
(オリーブ油)	0.918	57.3	15
(海水)	1.025	63.99	15
(ターペンタイン)	0.87	54.3	_
(水)	1.00	62.43	4
	l .	l .	1

臨界圧力及び臨界温度

液 体	臨界圧	臨界圧力 Pc		度 Tc
/授 14	kPaA	bars (abs.)	°F	°C
(酢酸)	5798	58.0	612	322
(アセトン)	4764	47.6	455	235
(アセチレン)	6280	62.9	97	36
(空気)	3771	37.8	-222	-141
(アンモニア)	11297	113.0	270	132
(アルゴン)	4860	48.6	-188	-122
(ベンゼン)	4833	48.4	552	289
(ブタン)	3647	36.5	307	153
(炭酸ガス)	7390	74.0	88	31
(一酸化炭素)	3543	35.5	-218	-139
(四塩化炭素)	4557	45.6	541	283
(塩素)	7708	77.0	291	144
(エタン)	4944	49.5	90	32
(エチルアルコール)	6391	64.0	469	243
(エチレン)	5115	51.2	50	10
(エチルエーテル)	3599	36.0	383	195
(フルオライン)	2530	25.3	-247	-155
(ヘリウム)	228.9	2.29	-450	-268
(ヘプタン)	2716	27.2	513	267
(水素)	1296	13.0	-400	-240
(塩化水素)	8266	82.6	124	51
(イソブタン)	3750	37.5	273	134
(イソブロピルアルコール)	5370	53.7	455	235
(メタン)	4640	46.4	-117	-83
(メチルアルコール)	7970	79.6	464	240
(窒素)	3392	34.0	-233	-147
(亜酸化窒素)	7267	72.7	99	37
(オクタン)	2496	25.0	565	296
(酸素)	5033	50.4	-182	-119
(ペンタン)	3344	33.5	387	197
(フェノール)	6129	61.3	786	419
(ホスゲン)	5674	56.7	360	182
(プロパン)	4254	42.6	207	97
(プロピレン)	4557	45.6	198	92
(RF 12)	4012	40.1	234	112
(RF 22)	4915	49.2	207	97
(亜硫酸ガス)	7873	78.8	315	157
(水)	22104	221.0	705	374

ガスの物理定数表

気 体 名	密 度 kg·m ⁻³ (0°C、101325Pa)	比 重 空気=1	此 重 酸素=1	分子量
	1.173	0.9073	0.8208	26.04
(空気)	1.2929	1.0000	.9047	28.97
(アンモニア)	.7710	.5963	.5395	17.03
(アルゴン)	1.7837	1.3796	1.2482	39.944
(フッ化ひ素)	7.71*	5.96*	5.40*	169.91
(水素化ひ素)	3.484*	2.695*	2.438*	76.93
(フッ化ほう素)	2.99*	2.31*	2.09*	61.82
(ブタン-n)	2.5190*	2.0854*	1.8868*	58.12
(イソブタン)	2.673	2.067	1.870	58.12
(二酸化炭素)	1.9769	1.5290	1.3834	44.01
(一酸化炭素)	1.2504	.9671	.8750	28.01
(酸硬化炭素)	2.72	2.10	1.90	60.07
(塩素)	3.214	2.486	2.249	70.91
(二酸化塩素)	3.0911	2.3911	2.1611	67.46
(一酸化塩素)	3.89	3.01	2.72	86.91
(ジシアン)	2.335*	1.806	1.634*	52.04
(ジメチルアミン)	1.96617	1.52117	1.37617	45.08
(エタン)	1.3566	1.0493	.9493	30.07
(エチレン)	1.2604	.9749	.8820	28.05
(フッ素)	1.696	1.312	1.187	38.00
(水素化ゲルマニウム)	6.7420	5.2120	4.7220	151.25
(四水素化ゲルマニウム)	3.420	2.645	2.393	76.63
(ヘリウム)	.17847	.13804	.12489	4.003
(水素)	.08988	.06952	.06290	2.016
(真化水素)	3.6445	2.8189	2.5503	80.92
(塩化水素)	1.6392	1.2678	1.1471	36.47
(よう化水素)	5.7891	4.4776	4.0510	127.93
(セレン化水素)	3.670	2.839	2.568	80.98
(硫化水素)	1.539	1.190	1.077	34.08
(テルル化水素)	5.81	4.49	4.07	129.63
(クリプトン)	3.708	2.868	2.595	83.70
(メタン)	.7168	.5544	.5016	16.04
(メチルアミン)	1.396	1.080	.9769	31.06
(塩化メチル)	2.3076	1.7848	1.6148	50.49
(メチルエーテル)	2.1098	1.6318	1.4764	46.07
(フッ化メチル)	1.5452	1.1951	1.0813	34.03
(ネオン)	.90036	.69638	.63004	20.18
(酸化窒素)	1.3402	1.0366	.9378	30.01

^{* 20℃}における密度

ガスの物理定数表

E 4 6	密度	比 重	比 重	, , , , , , , , , , , , , , , , , , ,
気 体 名	kg •m⁻³ (0°C \101325Pa)	空 気 = 1	酸素=1	分子量
(窒素)	1.25055	.96724	.87510	28.02
(窒素ガス)	1.2568	.9721	.8795	_
(塩化酸化窒素)	2.992	2.314	2.094	65.47
(フッ化酸化窒素)	2.176*	1.683*	1.523*	49.01
(酸化窒素)	1.9778	1.5297	1.3840	44.02
(酸素)	1.42904	1.10527	1.0000	32.00
(オゾン)	2.144	1.658	1.500	48.00
(りん化水素)	1.5294	1.1829	1.0702	34.00
(フッ化りん)	3.907*	3.022*	2.734*	87.98
(フッ酸化りん)	4.8	3.7	3.4	103.98
(五フッ化りん)	5.81	4.494	4.066	125.98
(プロパン)	2.0096	1.554	1.407	44.09
(ラドン)	9.73	7.526	6.809	222.00
(塩化シリカ)	3.03	2.34	2.12	66.54
(塩化メチルシリカ)	3.64	2.82	2.55	80.60
(二塩化メチルシリカ)	5.3	4.1	3.7	115.02
(ジメチルシリカ)	2.73	2.11	1.91	60.14
(メチルシリカ)	2.08	1.61	1.46	46.12
(三フッ化シリカ)	3.86	2.99	2.70	86.07
(フッ化シリコン)	4.684	3.623	3.278	104.06
(六水素化シリコン)	2.85	2.204	1.994	62.17
(四水素化シリコン)	1.44	1.114	1.008	32.09
(スチビン)	5.30	4.10	3.71	125.00
(二酸化いおう)	2.9269	2.2638	2.0482	64.07
(フッ化いおう)	6.50*	5.03*	4.55*	146.07
(フッ酸化いおう)	3.72*	2.88*	2.60*	102.07
(トリメチルアミン)	2.580	1.996	1.085	59.11
(トリメテルほう素)	2.52	1.95	1.76	55.92
(フッ化タングステン)	12.9	9.98	9.03	297.92
(キセノン)	5.851	4.525	4.094	131.30

^{* 20℃}における密度

水の物理的性質

-l. 0	`'P &	# = =	II	
7K ()	温度	蒸気圧	比 重 量	上 比 重
$^{\circ}$	°F	kPaA	kgf/m³	上
0	32	0.6107	999.87	1.00
4	40	0.8385	1000.1	1.00
10	50	1.2268	999.81	1.00
16	60	1.7656	999.18	1.00
21	70	2.5020	998.13	1.00
27	80	3.4353	996.76	1.00
32	90	4.8129	995.10	1.00
38	100	6.5440	993.18	.99
43	110	8.7899	991.03	.99
49	120	11.6699	988.65	.99
54	130	15.3258	986.03	.99
60	140	19.9183	983.24	.98
66	150	25.6346	980.23	.98
71	160	32.6875	977.12	.98
77	170	41.3135	973.81	.97
82	180	51.7811	971.32	.97
88	190	64.3905	966.69	.97
93	200	79.4613	962.91	.96
99	210	97.3653	959.00	.96
100	212	101.313	958.19	.96
104	220	117.994	955.00	.96
440	040	170 100	040.40	0.5
116 127	240	172.136 244.235	946.48	.95
138	260 280		937.44	.94
149	300	339.192 461.942	927.94 918.06	.93 .92
149	300	401.942	910.00	.92
177	350	927.974	890.49	.89
204	400	1704.59	859.44	.86
232	450	2913.07	824.50	.82
260	500	4694.25	784.15	.78
200	500	100 1.20	701.10	., 5
288	550	7207.3	736.22	.74
316	600	10639.2	677.66	.68
343	650	15224.8	599.04	.60
371	700	21332.4	437.46	.44
3/1	700	21302.4	457.40	.44

	飽和	蒸気表(温度基準)			飽和	蒸気表(王力基準)	
温度	飽和圧	力	比容積	責m ³ /kg	圧	カ	飽和温度	比容積	∮m³/kg
°C	kPaA	mmHg	V′	V"	kPaA	mmHg	°C	V′	V"
(**) 0 2 4 6 8	0.61 0.71 0.81 0.93 1.07	4.6 5.3 6.1 7.0 8.0	0.00100022 0.00100009 0.00100003 0.00100004 0.00100011	206.305 179.923 157.272 137.780 120.966	0.98 1.96 3.92 5.88 7.84	7.4 14.7 29.4 44.1 58.8	6.699 17.204 28.645 35.83 41.16	0.00100006 0.00100119 0.00100390 0.00100625 0.00100872	131.62401 68.2556 35.4496 24.1820 18.4405
10 12 14 16 18	1.23 1.40 1.60 1.82 2.06	9.2 10.5 12.0 13.6 15.5	0.00100025 0.00100044 0.00100069 0.00100099 0.00100133	106.430 93.8354 82.8998 73.3843 65.0873	9.81 19.61 29.42 39.22 49.03	73.6 147.1 220.7 294.2 367.8	45.45 59.66 68.68 75.42 80.86	0.00101006 0.00101696 0.00102206 0.00102621 0.00102976	14.9467 7.79127 5.32592 4.06715 3.30001
20 22 24 26 28	2.34 2.64 2.98 3.36 3.78	17.5 19.8 22.4 25.2 28.3	0.00100172 0.00100216 0.00100263 0.00100315 0.00100371	57.8383 51.4923 45.9260 41.0343 36.7276	58.84 78.45 98.06 101.32 147.09	441.3 588.4 735.6 760.0 1103.3	85.45 92.99 99.09 100.00 110.79	0.00103291 0.00103834 0.00104299 0.00104371 0.00105253	2.78214 2.12544 1.72495 1.67300 1.18041
30 32 34 36 38	4.24 4.26 5.32 5.94 6.62	31.8 35.7 39.9 44.6 49.7	0.00100431 0.00100493 0.00100560 0.00100631 0.00100704	32.9288 29.5724 26.6014 23.9671 21.6274	196.12 294.18 392.24 490.30 588.36	1471.1 2206.7 2942.2 3677.8 4413.4	119.61 132.88 142.92 151.11 158.08	0.00106028 0.00107284 0.00108312 0.00109202 0.00109997	0.901776 0.616754 0.470785 0.381632 0.321345
40 42 44 46 48	7.37 8.20 9.10 10.09 11.16	55.3 61.1 68.3 75.6 83.7	0.00100781 0.00100861 0.00100943 0.00101030 0.00101119	19.5461 17.6916 16.0365 14.5572 13.2329	686.42 784.48 882.54 980.60 1176.72		164.17 169.61 174.53 179.04 187.08	0.00110723 0.00111396 0.00112026 0.00112622 0.00113732	0.277768 0.244751 0.218840 0.197945 0.166284
50 55 60 65 70	12.33 15.74 19.92 25.01 31.16	92.5 118.1 149.4 187.6 233.7	0.00101211 0.00101454 0.00101714 0.00101991 0.00102285	12.0547 9.57887 7.67854 6.20228 5.04627	1372.84 1568.96 1765.08 1961.20 2157.32		194.13 200.43 206.15 211.39 216.24	0.00114757 0.00115717 0.00116525 0.00117493 0.00118327	0.143394 0.126047 0.112434 0.101455 0.0924081
75 80 85 90 95	38.55 47.36 57.80 70.10 84.52	289.1 355.2 433.6 525.9 634.0	0.00102594 0.00102919 0.00103259 0.00103614 0.00103985	4.13410 3.40909 2.82881 2.36130 1.98222	2353.44 2549.56 2745.68 2941.80 3137.92		220.76 224.9 228.98 232.76 236.35	0.00119133 0.00119913 0.00120674 0.00121417 0.00122145	0.0848196 0.0783601 0.0727929 0.0679431 0.0636793
100 105 110 120 130	101.32 120.79 143.26 198.53 270.12	760.0 906.1 1074.6 1489.2 2026.2	0.00104371 0.00104771 0.00105187 0.00106063 0.00107002	1.67300 1.41928 1.20994 0.891524 0.668136	3334.04 3530.16 3726.28 3922.40 4118.52		239.77 243.04 246.17 249.18 252.07	0.00122859 0.00123562 0.00124255 0.00124938 0.00125615	0.0599001 0.0565266 0.0534959 0.0507578 0.0482713
140 150 160 170 180	361.35 475.96 618.02 791.97 1002.57	2710.6	0.00108006 0.00109078 0.00110222 0.00111445 0.00112752	0.508494 0.392447 0.306756 0.242553 0.193800	4314.64 4510.76 4706.88 4903.0 5393.3		254.86 257.56 260.17 262.69 268.69	0.00126284 0.00126947 0.00127606 0.00128260 0.00129882	0.0460028 0.0439246 0.0420132 0.0402491 0.0363798
190 200 210 220 230	1255.07 1554.74 1907.66 2319.71 2797.46		0.00114150 0.00115649 0.00117260 0.00118995 0.00120872	0.156316 0.127160 0.104239 0.0860378 0.0714498	5883.6 6373.9 6864.2 7844.8 8825.4		274.28 279.53 284.47 293.61 301.91	0.00131489 0.00133089 0.00134689 0.00137912 0.00141194	0.0331317 0.0303641 0.0279761 0.0240593 0.0209758
240 250 260 270 280	3347.57 3977.31 4694.03 5505.48 6419.79		0.00122908 0.00125129 0.00127563 0.00130250 0.00133239	0.0596544 0.0500374 0.0421338 0.0355880 0.0301260	9806.0 10786.6 11767.2 12747.8 13728.4		309.53 316.58 323.15 329.31 335.10	0.00144575 0.00148088 0.00151774 0.00155677 0.00159853	0.0184791 0.0164099 0.0146594 0.0131514 0.0118316
290 300 310 320 330	7445.60 8592.12 9869.74 11288.67 12861.55		0.00136594 0.00140406 0.00144797 0.00149950 0.00156147	0.0255351 0.0216487 0.0183339 0.0154798 0.0129894	14709.0 15689.6 16670.2 17650.8 18631.4		340.57 345.75 350.67 355.35 359.81	0.00164374 0.00169345 0.0017491 0.0018139 0.0018921	0.0106617 0.0096151 0.0086722 0.0077945 0.0069743
340 350 360 370 374.15	14604.08 16533.90 18673.57 21052.50 22118.41		0.00163871 0.00174112 0.0018959 0.0022136 0.0031700	0.0107804 0.0087991 0.0069398 0.0049727 0.0031700	19612.0 20592.6 21573.2 22118.41		364.07 368.15 372.05 374.15	0.0019902 0.0021242 0.0023668 0.0031700	0.0061872 0.0053845 0.0044231 0.0031700

(※)太字は0℃における状態は準安定な状態である。

主要フランジ規格表

呼び圧力5K鋼製フランジの基準寸法(JIS B2238-1996)

11年7	 ゾ径	コニンの内々	□ →		ボルト穴		+111 Oblio
۴) (ノ Iエ 	フランジの外径	厚さ	中心円の径	数	径	ボルトのねじの
mm	inch	(mm)	(mm)	(mm)	奴	(mm)	呼び
40	1 1/2	120	12	95	4	15	M12
50	2	130	14	105	4	15	M12
65	2 1/2	155	14	130	4	15	M12
80	3	180	14	145	4	19	M16
100	4	200	16	165	8	19	M16
125	5	235	16	200	8	19	M16
150	6	265	18	230	8	19	M16
200	8	320	20	280	8	23	M20
250	10	385	22	345	12	23	M20
300	12	430	22	390	12	23	M20
350	14	480	24	435	12	25	M22
400	16	540	24	495	16	25	M22
450	18	605	24	555	16	25	M22
500	20	655	24	605	20	25	M22
550	22	720	26	665	20	27	M24
600	24	770	26	715	20	27	M24
650	26	825	26	770	24	27	M24
700	28	875	26	820	24	27	M24
750	30	945	28	880	24	33	M30
800	32	995	28	930	24	33	M30
850	34	1045	28	980	24	33	M30
900	36	1095	30	1030	24	33	M30
1000	40	1195	32	1130	28	33	M30
1100	44	1305	32	1240	28	33	M30
1200	48	1420	34	1350	32	33	M30
1350	54	1575	34	1505	32	33	M30

呼び圧力10K鋼製フランジの基準寸法(JIS B2238-1996)

I呼7	· び径	コニンのかり	巨 十		ボルト穴		ポ リトのわじの
P.J. C		フランジの外径 (mm)	厚さ (mm)	中心円の径	数	, 径、	ボルトのねじの 呼び
mm	inch			(mm)		(mm)	
40	1 1/2	140	16	105	4	19	M16
50	2	155	16	120	4	19	M16
65	2 1/2	175	18	140	4	19	M16
80	3	185	18	150	8	19	M16
100	4	210	18	175	8	19	M16
125	5	250	20	210	8	23	M20
150	6	280	22	240	8	23	M20
200	8	330	22	290	12	23	M20
250	10	400	24	355	12	25	M22
300	12	445	24	400	16	25	M22
350	14	490	26	445	16	25	M22
400	16	560	28	510	16	27	M24
450	18	620	30	565	20	27	M24
500	20	675	30	620	20	27	M24
550	22	745	32	680	20	33	M30
600	24	795	32	730	24	33	M30
650	26	845	34	780	24	33	M30
700	28	905	34	840	24	33	M30
750	30	970	36	900	24	33	M30
800	32	1020	36	950	28	33	M30
850	34	1070	36	1000	28	33	M30
900	36	1120	38	1050	28	33	M30
1000	40	1235	40	1160	28	39	M36
1100	44	1345	42	1270	28	39	M36
1200	48	1465	44	1380	32	39	M36
1350	54	1630	48	1540	36	45	M42

呼び圧力16K鋼製フランジの基準寸法(JIS B2238-1996)

1至7	び径	コニンのの内々	□ +		ボルト穴		4,111 W401,10
mm	inch	フランジの外径 (mm)	厚さ (mm)	中心円の径 (mm)	数	径 (mm)	ボルトのねじの 呼び
40	1 1/2	140	16	105	4	19	M16
50	2	155	16	120	8	19	M16
65	2 1/2	175	18	140	8	19	M16
80	3	200	20	160	8	23	M20
100	4	225	22	185	8	23	M20
125	5	270	22	225	8	25	M22
150	6	305	24	260	12	25	M22
200	8	350	26	305	12	25	M22
250	10	430	28	380	12	27	M24
300	12	480	30	430	16	27	M24
350	14	540	34	480	16	33	M30×3
400	16	605	38	540	16	33	M30×3
450	18	675	40	605	20	33	M30×3
500	20	730	42	660	20	33	M30×3
600	24	845	46	770	24	39	M36×3

呼び圧力20K鋼製フランジの基準寸法(JIS B2238-1996)

1座7	び径	フランジの外径	□ +	ボルト穴			#11 041,0
mm	inch	フラフラの外径 (mm)	厚さ (mm)	中心円の径 (mm)	数	径 (mm)	ボルトのねじの 呼び
40	1 1/2	140	18	105	4	19	M16
50	2	155	18	120	8	19	M16
			·		·	·	
65	2 1/2	175	20	140	8	19	M16
80	3	200	22	160	8	23	M20
100	4	225	24	185	8	23	M20
125	5	270	26	225	8	25	M22
150	6	305	28	260	12	25	M22
200	8	350	30	305	12	25	M22
250	10	430	34	380	12	27	M24
300	12	480	36	430	16	27	M24
350	14	540	40	480	16	33	M30×3
400	16	605	46	540	16	33	M30×3
450	18	675	48	605	20	33	M30×3
500	20	730	50	660	20	33	M30×3
600	24	845	54	770	24	39	M36×3

呼び圧力30K鋼製フランジの基準寸法(JIS B2238-1996)

DT/ 7	ブ径	7-1.250 H/R	<u></u>		ボルト穴			
		フランジの外径 (mm)	厚さ (mm)	中心円の径 (mm)	数	径 (mm)	ボルトのねじの 呼び	
mm	inch			` ,		` '		
50	2	165	22	130	8	19	M16	
65	2 1/2	200	26	160	8	23	M20	
80	3	210	28	170	8	23	M20	
100	4	240	32	195	8	25	M22	
125	5	275	36	230	8	25	M22	
150	6	325	38	275	12	27	M24	
200	8	370	42	320	12	27	M24	
250	10	450	48	390	12	33	M30×3	
300	12	515	52	450	16	33	M30×3	

ASME Class 150鋼製管フランジの基準寸法(ASME B16.5-2009)

DTV 7	· K·\.△		RF高さを含む		ボルト穴			
mm	げ径 inch	フランジの外径 (mm)	厚さ (mm)	中心円の径 (mm)	数	径 (mm)	ボルトのねじの 呼び	
40	1 1/2	125	17.5	98.4	4	16	U1/2-13UNC	
50	2	150	19.1	120.7	4	20	U5/8-11UNC	
65	2 1/2	180	22.3	139.7	4	20	U5/8-11UNC	
80	3	190	23.9	152.4	4	20	U5/8-11UNC	
100	4	230	23.9	190.5	8	20	U5/8-11UNC	
125	5	255	23.9	215.9	8	23	U3/4-10UNC	
150	6	280	25.4	241.3	8	23	U3/4-10UNC	
200	8	345	28.6	298.5	8	23	U3/4-10UNC	
250	10	405	30.2	362.0	12	26	U7/8- 9UNC	
300	12	485	31.8	431.8	12	26	U7/8- 9UNC	
350	14	535	35.0	476.2	12	29	U1 - 8UNC	
400	16	595	36.6	539.8	16	29	U1 - 8UNC	
450	18	635	39.7	577.9	16	32	U1 1/8-8UN	
500	20	700	42.9	635.0	20	32	U1 1/8-8UN	
600	24	815	47.7	749.3	20	35	U1 1/4-8UN	

ASME Class300鋼製管フランジの基準寸法(ASME B16.5-2009)

NT 7	デ径		RF高さを含む		ボルト穴		
mm	inch	フランジの外径 (mm)	厚さ (mm)	中心円の径 (mm)	数	径 (mm)	ボルトのねじの 呼び
50	2	165	22.3	127.0	8	20	U5/8-11UNC
65	2 1/2	190	25.4	149.2	8	23	U3/4-10UNC
80	3	210	28.6	168.3	8	23	U3/4-10UNC
100	4	255	31.8	200.0	8	23	U3/4-10UNC
125	5	280	35.0	235.0	8	23	U3/4-10UNC
150	6	320	36.6	269.9	12	23	U3/4-10UNC
200	8	380	41.3	330.2	12	26	U7/8- 9UNC
250	10	445	47.7	387.4	16	29	U1 - 8UNC
300	12	520	50.8	450.8	16	32	U1 1/8-8UN